
Imagga Technologies @IBM think 2019 

October, 2019

Semantic Segmentation of 

Cityscape and Waste Images Using 

Large Model Support - a Comparison 

between IBM Power AC922, NVIDIA 

DGX Station and AWS p3.8xlarge



 

@IBM Think 2019Problem Definition (1/2)

In this study we wanted to benchmark and compare the IBM Power AC922 server vs the NVIDIA DGX Station vs the 

Amazon Web Services p3.8xlarge instance type for state-of-the-art deep learning training.

We considered a number of common image analysis and recognition tasks, that are used in various applications and 

that require very intensive computing and data resources.

Initially, image classification with very large number of categories and object recognition were considered, but by 

state-of-the-art deep learning training infrastructure standards, these tasks are not any more so computing intensive, 

even for the PlantSnap plant recognition classifier (1) we trained at Imagga with over 320K plant species; we also 

wanted to use publicly available data sets for this benchmarking.

Other tasks and applications considered were 3D medical image processing, but a benchmarking was already done 

in (2).

(1) PlantSnap/Imagga: Training the world’s largest plant recognition classifier, https://imagga.com/success-stories/plantsnap-case-study.html 

(2) Sam Matzek, TensorFlow Large Model Support Case Study with 3D Image Segmentation, IBM Power developer portal, Published on July 27, 2018, https://

developer.ibm.com/linuxonpower/2018/07/27/tensorflow-large-model-support-case-study-3d-image-segmentation/

https://imagga.com/success-stories/plantsnap-case-study.html
https://developer.ibm.com/linuxonpower/2018/07/27/tensorflow-large-model-support-case-study-3d-image-segmentation/
https://developer.ibm.com/linuxonpower/2018/07/27/tensorflow-large-model-support-case-study-3d-image-segmentation/


 

@IBM Think 2019Problem Definition (2/2)
We finally decided to focus this benchmarking study of IBM Power AC922 (3) vs NVIDIA DGX Station (4) vs 

Amazon Web Services p3.8xlarge instance (5) on the task of semantic segmentation of (a) cityscape images using 

the Cityscape data set (6, 7) and (b) of waste in the wild using the TACO data set (8) using IBM’s Large Model 

Support. 

For the choice of a neural network we were looking for a hardware demanding architecture which uses high-

resolution input images for training. We found out that Gated Shape CNN (9) - a state-of-the-art CNN architecture 

ranking as the one of the top methodologies in the Cityscape benchmark, is the perfect candidate for 

benchmarking the performance of IBM Power AC922, NVIDIA DGX Station and AWS p3.8xlarge instance.

(3) IBM Power AC922 servers and processor chip, https://www.ibm.com/it-infrastructure/power/power9 

(4) NVIDIA DGX Workstation, https://www.nvidia.com/en-us/data-center/dgx-station/ and https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-

station/nvidia-dgx-station-datasheet.pdf 

(5) AWS p3 instance type, https://aws.amazon.com/ec2/instance-types/p3/ 

(6) The Cityscapes data set, https://www.cityscapes-dataset.com/ 

(7) M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele, 'The Cityscapes Dataset for Semantic Urban Scene 

Understanding,' in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, https://www.cityscapes-dataset.com/wordpress/wp-

content/papercite-data/pdf/cordts2016cityscapes.pdf 

(8) Pedro F. Proena and Pedro Simes, TACO: Trash Annotations in Context Dataset, 2019, http://tacodataset.org 

(9) Takikawa, Towaki & Acuna, David & Jampani, Varun & Fidler, Sanja, Gated-SCNN: Gated Shape CNNs for Semantic Segmentation, 2019, https://arxiv.org/pdf/

1907.05740.pdf

https://www.ibm.com/it-infrastructure/power/power9
https://www.nvidia.com/en-us/data-center/dgx-station/
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-station/nvidia-dgx-station-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-station/nvidia-dgx-station-datasheet.pdf
https://aws.amazon.com/ec2/instance-types/p3/
https://www.cityscapes-dataset.com/
https://www.cityscapes-dataset.com/wordpress/wp-content/papercite-data/pdf/cordts2016cityscapes.pdf
https://www.cityscapes-dataset.com/wordpress/wp-content/papercite-data/pdf/cordts2016cityscapes.pdf
http://tacodataset.org
https://arxiv.org/pdf/1907.05740.pdf
https://arxiv.org/pdf/1907.05740.pdf


 

@IBM Think 2019Cityscape Dataset

+ Street photos from 50 cities (cityscapes) 

+ Several months (spring, summer, fall), daytime 

+ Good/medium weather conditions 

+ Manually selected frames 

+ Large number of dynamic objects 

+ Varying scene layout

+ Varying background 

+ 5000 annotated images with fine annotations 

+ 20000 annotated images with coarse annotations 

+ Very challenging data set for semantic segmentation 

+ Various applications such as autonomous cars and driving



 

@IBM Think 2019Semantic Segmentation

+ Semantic image segmentation is one of 

the most widely studied problems in 

computer vision and image analysis 

with applications in autonomous 

driving, 3D reconstruction, medical 

imaging, image generation, etc. 

+ State-of-the-art approaches for 

semantic segmentation are 

predominantly based on Convolutional 

Neural Networks (CNN). 

+ Recently, dramatic improvements in 

performance and inference speed have 

been driven by new architectural 

designs.



 

@IBM Think 2019G-SCNN - Architecture Overview

+ State-of-the-art CNN architecture, achieving 82.8% IoU score on the Cityscapes dataset 

+ Originally trained on a NVIDIA DGX Station 2 with 8 NVIDIA Tesla V100 

+ Trained with batch size of 16 - 2 per each GPU 

+ Trained for 175 epochs and high-resolution input size of 800x800



 

@IBM Think 2019Hardware (1/4) - AWS p3.8xlarge

+ CPU: 32-Core Intel Xeon E5-2686 v4 

+ GPU: 4x 16GB NVIDIA Tesla V100 with 

NVLink 

+ System Memory: 244GB



 

@IBM Think 2019Hardware (2/4) - NVIDIA DGX Station

+ CPU: 20-core Intel Xeon E5-2698 v4 

+ GPU: 4x 16GB NVIDIA Tesla V100 with NVLink, 

Water Cooled 

+ System Memory: 256GB



 

@IBM Think 2019Hardware (3/4) - IBM Power AC922

+ CPU: 32-Core IBM POWER9 Single Chip 

Module (SCM) 

+ GPU: 4x 16GB SXM2 NVIDIA Tesla V100 

with NVLink, Air Cooled 

+ System Memory: 512GB



 

@IBM Think 2019

+ NVIDIA DGX Station and AWS 

p3.8xlarge (left): The NVIDIA Tesla V100 

GPUs are each connected with a single 

NVLink 2.0 brick capable of 50 GB/s of 

bidirectional bandwidth. The CPU and 

GPU communication is through PCIe 

Gen3. 

+ IBM Power AC922 (right): The NVIDIA 

Tesla V100 GPUs are each connected 

with three NVLink 2.0 bricks for up to 

150GB/s of bidirectional bandwidth 

between GPUs. Three NVLink 2.0 bricks 

also connect each GPU with the IBM 

Power9 CPU providing 150GB/s of 

bidirectional bandwidth, enabling direct 

system memory access.

Hardware (4/4) - NVLink comparison



 

@IBM Think 2019IBM Large Model Support

+ Model depth and complexity 

+ Input data size (e.g. high-resolution images) 

+ Batch size

Large Model Support (LMS) is a feature that allows the successful training of deep learning models that would 

otherwise exhaust GPU memory and abort with out of memory errors. LMS manages this oversubscription of GPU 

memory by temporarily swapping tensors to host memory when they are not needed. 

 

IBM POWER Systems with NVLink technology are especially well-suited to LMS because of their hardware topology 

that enables fast communication between CPU and GPUs. 

One or more elements of a deep learning model can lead to GPU memory exhaustion. These include:

With IBM LMS, deep learning models can scale significantly beyond what was previously possible and, ultimately, 

generate more accurate results.



 

@IBM Think 2019Benchmarks (1/5) - Overview

+ Training time - comparing the training time for 175 epochs on the Cityscape dataset on the AC922, the DGX and 

the AWS p3.8xlarge instance type 

+ Use of LMS - showcasing what the benefits of using Large Model Support are by demonstrating “Out of Memory” 

situations using the G-SCNN architecture and the Cityscape dataset 

+ LMS overhead - overviewing the training time overhead when using Large Model Support 

+ GPU profiling - a detailed comparison of the two systems during training using NVIDIA profiling data

To showcase the benefits of using LMS and to benchmark the performance of IBM Power AC922 vs NVIDIA DGX 

Station vs AWS p3.8xlarge, the following benchmarks and tests were created:



 

@IBM Think 2019Benchmarks (2/5) - Training time

Training parameters: Training Time
Total Time Accuracy

IBM Power AC922 3d 17h 72.6%
NVIDIA DGX 

Station 6d 11h 73.3%

AWS p3.8xlarge 6d 14h 70.6%

+ Input size: 800x800 

+ Batch size: 16 

+ Validation batch size: 2 

+ Epochs: 175 

+ Learning rate: 0.01 

+ Learning rate policy: polynomial

The training on IBM Power AC922 completed first - 3 days and 6 hours earlier than the one on the NVIDIA DGX 

Station with almost no difference in accuracy. The training on the AWS p3.8xlarge came last - 3 hours later than the 

DGX.



 

@IBM Think 2019Benchmarks (3/5) - Use of LMS 

+ The semantic segmentation using G-SCNN has a high-memory usage requirements due to the large input size of 

800x800 and the architecture design. 

+ The neural network framework of our choice is the same framework used in the paper - PyTorch. The LMS 

integration was as easy as adding a single line of code: 

torch.cuda.set_enabled_lms(True) 

+ Without LMS activated, with batch size 16 the training couldn't fit in the 4x NVIDIA Tesla V100 GPUs on all 

machines, resulting in an “Out of Memory” error. 

+ Batch size of 8 fitted on the four GPUs but with some reduction of the input size from 800x800 to 700x700. 

+ Charts for epoch times are shown on the next slide.



 

@IBM Think 2019Benchmarks (3/5) - Use of LMS
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@IBM Think 2019Benchmarks (4/5) - LMS overhead

+ For calculating the LMS overhead we used input sizes of 600x600 and 700x700 and a fixed batch size of 8. 

+ LMS overhead for 600x600 input size is 106% for the DGX , 105% for the AWS p3.8xlarge and 43% for the AC922. 

+ LMS overhead for 700x700 input size is 72.8% for the DGX, 91% for the AWS p3.8xlarge and 30% for the AC922. 

+ IBM Power AC922 shows significantly lower LMS overhead due to the NVLink connectivity between the CPU and 

the GPU. 

+ The AWS p3.8xlarge instance shows similar performance to the DGX due to the almost identical GPU and CPU 

system architecture. 

+ The next slide shows exact epoch times for each machine and train type.



 

@IBM Think 2019Benchmarks (4/5) - LMS overhead
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@IBM Think 2019Benchmarks (5/5) - GPU profiling

+ To investigate further where the difference in the numbers between the machines come from, we used Nvprof 

to profile the GPU activity during epoch 2 between 40th and 60th iteration. 

+ Nvprof shows that the memory copies between the CPU and GPU for tensor swapping for the LMS take 

considerably longer on the NVIDIA DGX Station and the AWS p3.8xlarge instance type than on the IBM Power 

AC922 and lead to GPUs becoming idle. 

+ The graphic on the next slide shows GPU usage on the 50th iteration on the three machines. The blue lines 

relatively mark the locations of equivalent tensors on the machines. 

+ The gaps in the GPU utilisation for the AC922 machine are drastically smaller than both the DGX and AWS - 

leading to higher utilisation and faster trainings.



 

@IBM Think 2019Benchmarks (5/5) - GPU profiling

CPU-to-
GPU 

throughput

GPU 
Utilization

AC922 39.25GB/s 76.5%

DGX 6.94GB/s 37%

AWS P3 6.42GB/s 29.7%



 

@IBM Think 2019Cityscapes - Results (1/3)

Ground Truth



 

@IBM Think 2019Cityscapes - Results (1/3)

Model trained on IBM Power AC922



 

@IBM Think 2019Cityscapes - Results (1/3)

Model trained on NVIDIA DGX Station



 

@IBM Think 2019Cityscapes - Results (1/3)

Model trained on AWS p3.8xlarge



 

@IBM Think 2019Cityscapes - Results (2/3)

Ground Truth



 

@IBM Think 2019Cityscapes - Results (2/3)

Model trained on IBM Power AC922



 

@IBM Think 2019Cityscapes - Results (2/3)

Model trained on NVIDIA DGX Station



 

@IBM Think 2019Cityscapes - Results (2/3)

Model trained on AWS p3.8xlarge



 

@IBM Think 2019Cityscapes - Results (3/3)

Ground Truth



 

@IBM Think 2019Cityscapes - Results (3/3)

Model trained on IBM Power AC922



 

@IBM Think 2019Cityscapes - Results (3/3)

Model trained on NVIDIA DGX Station



 

@IBM Think 2019Cityscapes - Results (3/3)

Model trained on AWS p3.8xlarge



 

@IBM Think 2019Use Case - Waste Segmentation
+ Humans have been littering the Earth from the bottom of Mariana trench to Mount Everest. Every minute, at least 15 tonnes of plastic 

waste leak into the ocean, that is equivalent to the capacity of one garbage truck. 

+ We believe AI has an important role to play in this issue. 

+ One way to achieve automatic waste segmentation is using the semantic segmentation technology. 

+ We used the TACO dataset for training our waste segmentation model based on the G-SCNN architecture. 

+ The dataset consists of 715 images and 2152 annotations, labeled in 60 categories of litter. 

+ We trained the dataset exclusively on the IBM Power AC922 as it achieved the best performance in our benchmarks.



 

@IBM Think 2019Waste Segmentation - Results (1/5)
Input image Prediction



 

@IBM Think 2019Waste Segmentation - Results (2/5)
Input image Prediction



 

@IBM Think 2019Waste Segmentation - Results (3/5)
Input image Prediction



 

@IBM Think 2019Waste Segmentation - Results (4/5)
Input image Prediction



 

@IBM Think 2019Waste Segmentation - Results (5/5)
Input image Prediction



 

@IBM Think 2019Conclusions

+ IBM Power AC922 is significantly faster than NVIDIA DGX Station and the AWS p3.8xlarge instance type in such 

computationally demanding tasks as semantic segmentation. 

+ Large Model Support enables us to train the model with a larger batch size and input image dimensions producing 

better overall results. 

+ IBM’s Large Model Support technology has less overhead when used with the IBM Power AC922 hardware, leading 

to more GPU utilisation and faster training time. 

+ IBM Power AC922 satisfies the hardware requirements for training on complex tasks such as automatic waste 

segmentation.
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